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Abstract

The Instrumentation and Sensing Laboratory (ISL) has developed a multi-spectral imaging system for on-line inspection of
poultry carcasses. The ISL design is based on two principles: (1) wholesome and unwholesome birds have different chemical
compositions of tissues and may have different skin color, and (2) unwholesome carcasses may have physical abnormalities which
can be detected by computerized imaging. On-line trials of the multi-spectral chicken carcass inspection system were conducted
during a 14-day period in a poultry-processing plant in New Holland, Pennsylvania, where spectral images of 13,132 wholesome and
1459 unwholesome chicken carcasses were measured. For off-line model development, the accuracies for classification of wholesome
and unwholesome carcasses were 95% and 88%. On-line testing of the neural network classification models with combination of the
filter information was performed. The inspection system gave accuracies of 94% and 87% for wholesome and unwholesome car-
casses, respectively. This accuracy was consistent with the results obtained previously on laboratory studies. Thus, the inspection
system shows promise for separation of unwholesome chicken carcasses from wholesome carcasses in poultry processing lines.
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1. Introduction

The number of chickens slaughtered at federally in-
spected establishments has grown from three billion in
the mid-1960s to roughly eight billion per year in 1995,
and this quantity continues to increase (US Department
of Agriculture, 1997). To meet increasing demand, some
line speeds at poultry plants were increased from 70 to
91 birds per minute and more recently some plants with
new automated evisceration equipment are operating at
140 birds per minute.

The USDA uses several thousand government in-
spectors in the Food Safety and Inspection Service
(FSIS) to inspect each individual bird. Inspectors ex-
amining 30-35 chickens per minute for at least 8 h per
day have a tendency to develop carpal tunnel syndrome,
repetitive motion injuries, and attention and fatigue
problems (OSHA, 1999).

An automated machine-based inspection system
could accurately screen and separate questionable car-
casses from wholesome poultry carcasses (Chen &
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Massie, 1993; Daley, Soulakos, Thompson, & Millet,
1988; Park & Chen, 1994). Inspectors then would only
have to “re-inspect” questionable carcasses to ensure
wholesome carcasses are not discarded. Chickens re-
quiring human inspection could then be reduced by
about 80-90%. A machine vision instrumental inspec-
tion system would improve inspection accuracy, increase
plant output, improve overall inspection effectiveness,
reduce the inspection cost per bird, and free up USDA
inspectors for hazard analysis and critical control points
(HACCP) functions, the new FSIS inspection program
to examine critical aspects of plant processes. Also,
implementing an automated poultry inspection system
would provide more consumer confidence in poultry.
The Instrumentation and Sensing Laboratory (ISL)
of the USDA Agricultural Research Service (ARS) in
Beltsville, Maryland has developed an automated
poultry inspection system. It consists of two sub-sys-
tems, a visible/near-infrared (Vis/NIR) spectrometer and
a spectral imaging sub-system. ISL has shown that the
Vis/NIR sub-system performs favorably in the classifi-
cation of wholesome and unwholesome carcasses (Chen,
Huffman, Park, & Nguyen, 1996). The overall prediction
accuracy of the Vis/NIR sub-system ranges from 95% to
98% when its conclusions are compared with those of an
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FSIS veterinarian in a poultry process plant (Chen,
Hruschka, & Earl, 2000).

The spectral imaging sub-system (Chao, Park, Chen,
Hruschka, & Wheaton, 2000) uses one pair of black and
white cameras with two band-pass filters (540 and 700
nm). These wavelengths were found in previous work
(Park & Chen, 1994) to be optimal for detection of
abnormalities. The sub-system measures the intensity of
diffusely reflected light from a surface. The reflected light
contains information about absorbers near the surface
of the material and analysis of the images can detect
physical abnormalities. In general, comparison of im-
ages at two or more wavelengths provides robustness for
classifying spectral images. Since the process of analyz-
ing a digital image to identify certain objects is inher-
ently computationally intensive, it is advantageous to
optically pre-process the image, extracting only those
features that provide useful information.

Using a neural network, the sub-system can learn and
predict which chickens are wholesome or unwholesome.
The time it takes for the sub-system to decide whether a
chicken is wholesome or not is faster than the present
maximum plant production speeds of 91 birds per
minute. Therefore, the sub-system can operate on the
processing line and will provide a record of the condi-
tion of each bird passing by the sub-system.

On-line testing of the imaging sub-system in a plant
environment was conducted at Tyson Foods (New
Holland, PA) in September 1999. This paper reports the
results of these trials.

2. Materials and methods
2.1. Hardware

Industrial machine frames (ParFrame, Parker auto-
mation, Wadsworth, OH) were utilized to fabricate the
transportable dual-camera system. A schematic of the
dual-camera system is shown in Fig. 1, and a description
of its major components is given in Chao et al., 2000,
which describes the laboratory version of the system.

For on-line in-plant model development and testing,
the illumination described in Chao et al., 2000 was
changed to a fiber-optic dual-line light (QDF5048, Do-
lan-Jenner Industries, Lawrence, MA) equipped with
AC regulated 150 W quartz-halogen illuminator
(PL841-1AN1, Dolan-Jenner Industries, Lawrence,
MA). Dual line lights were utilized for the dual-camera
system to provide evenly distributed illumination to the
poultry carcasses. Alignments relative to the geometry
of poultry carcass and angles of incidence are important

Fig. 1. Schematic of transportable dual-camera inspection system: (1) camera w/540 nm filter; (2) camera w/700 nm filter; (3) fiber-optic dual-line
illuminator; (4) industrial computer; (5) interface and camera control box; (6) 12 V power supply to the dual-camera; (7) fiber-optic light source;
(8) battery backup (UPS); (9) photoelectric proximity sensors; (10) magnetic proximity sensor; (11) camera enclosure.



K. Chao et al. | Journal of Food Engineering 51 (2002) 185-192 187

parameters to obtain a high-quality image. Two ad-
justable hinges were mounted at the end of two extended
profiles (arms) as pivoting joints to provide free rotation
to the dual-line lights. The dual-line lights were posi-
tioned bilaterally at 45° angles to provide balanced area
illumination to the poultry carcass.

Fig. 2 shows the schematic of sensor interface and
control circuitry for synchronizing and triggering image
acquisition. For image synchronization, the frame
grabber’s internal timing generator was utilized to gen-
erate horizontal and vertical synchronization signals.
The output signals from the frame grabber were wired
via a 12-pin connector to synchronize the horizontal and
vertical data lines to the dual-camera.

Image data acquisition occurs for one of two purposes:
off-line model development and on-line classification.
When acquiring images for off-line model development, a
stainless steel plate holding a magnet is hung on each
shackle suspending a chicken carcass, marking it for im-
age acquisition and indicating the condition of the
chicken. The position of the magnet (high or low) indi-
cates whether the chicken is wholesome or unwholesome.
In this mode, the veterinarian marks (by hanging the
appropriate magnetic markers) those chickens that pro-
vide a wide range of size and appearance within each class
(wholesome and unwholesome).

When acquiring images for testing on-line classifica-
tion, a photoelectric proximity sensor triggers image

Camera #] €—————
(540 nm) €

Frame Grabber
(Sync. Generation)

Camera #2 <€
(700 nm) €<——

910Q

WO @) =

Reg
12V i) 85002 o100

8. SS 17. Detection Output (PS)
9. Input to PIO-24 (MS #2) 19. Input to PIO-24 (PS)
10. Load (MS #2) 20. Input to PIO-24 (SS)

13. Grounding 21. Power (MS #1, #2)
14. Vce 22. Input to PIO-24 (MS #1)
15. Power 23. Load (MS #1)

Note: HD: Horizontal Data, VD: Vertical Data, SS: Stop Switch,
MS: Magnetic Switch, PS: Photoelectric Sensor.

Fig. 2. Pinout for the camera control and interface.

capture when a shackle is sensed. In this mode, images
of all carcasses are captured, and the veterinarian marks
only the unwholesome chickens by hanging the lower
magnetic marker. This saves effort because usually only
a very small percentage of the chickens are unwhole-
some.

2.2. Software and system operation

The Machine Vision Inspection System (MVIS) was
developed to integrate hardware components to provide
an automated process for on-line poultry carcass in-
spection. Object-oriented programming paradigms
(Rumbaugh, Blaha, Premerlani, Eddy, & Lorensen,
1991) were utilized to design the MVIS, and are de-
scribed in detail in Chao et al., 2000. The MVIS has
three primary operations: real-time imaging acquisition,
processing, and on-line classification of poultry car-
casses. At present in US, the viscera are still attached to
the bird during inspection, hanging over the back. This
configuration greatly increases the complexity of ma-
chine inspection. In these trials, only the front of the
bird was imaged, to determine the utility of a simplified
form of inspection.

The image processing is performed in real-time (two
images per chicken, 540/700 nm). The image is reduced
to a size of 256 x 240 pixels and then segmented from
the background using simple thresholding. A total of 15
horizontal layers (16 horizontal lines of pixels each) are
generated from each segmented image, as shown in
Fig. 3. For each layer, a centroid is calculated from the
binarized image. Based on these centroids, each layer
was divided into several square blocks (16 x 16 pixels),
for a total of 107 blocks. The averaged intensity of each
block is used as the input data to the neural network
models. The constant number of blocks in each layer
was previously determined to delineate the main part of
each carcass and omit the legs and wings. Note that for
a very small chicken, the edge blocks could contain
several background pixels, passing chicken size infor-
mation on to the neural net in the form of lowered-av-
erage intensity.

After off-line development of the backpropagation
neural network models, parameters (including weights
and biases from the optimized neural network models)
are saved in the ASCII data format. These parameters
are then incorporated into the on-line classification
section of the MVIS software. Immediately following
the on-line image processing, one-pass forward mapping
of the neural network application is performed to clas-
sify the carcasses as wholesome or unwholesome.

2.3. Samples and plant evaluation protocol

Chicken carcasses were measured at a processing
plant in Pennsylvania over a 14-day period in September
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Fig. 3. Real-time multi-spectral images for poultry carcass inspection.

of 1999. The dual-camera system was installed between
the evisceration station and inspector station. At this
point, the chicken breasts are facing the dual-camera
inspection system. Wholesome and unwholesome
chicken carcasses were identified by an USDA FSIS
veterinarian. Table 1 summarizes the number of car-
casses that were acquired for model development and
on-line testing of the inspection system. A total of 1400
poultry carcasses (700 wholesome and 700 unwhole-
some) were measured for development of classification
models. The “first’ data set used all 1000 samples col-
lected on or before 9/20/99. The ‘second’ data set used
the first data set plus 300 samples (150 wholesome and
150 unwholesome) from the data collected 9/21-22/99.
The ‘third’ data set consists of the second data set plus
100 samples (50 wholesome and 50 unwholesome) from

the data collected on 9/27/99. This procedure progres-
sively widened the variability of the calibration sets and
thereby the predictive ability of the models developed
from them.

Each feed-forward-back-propagation neural network
is configured with 107 input nodes, 10 nodes in one
hidden layer, and two output nodes. The output nodes’
target outputs are (0 1) or (1 0) depending on whether
the sample was identified wholesome or unwholesome
by the veterinarian. For each of the three data sets,
model development method starts with splitting the
data into two sub-sets: training (50%) and validation
(50%). Each sub-set contains equal numbers of
wholesome and unwholesome carcasses. The neural
network models are trained on the training sub-set.
The validation sub-set is used to decide which network
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Table 1
Number of carcasses used for model development and on-line testing
Date collected Wholesome Unwholesome Data set Total
Model development
9/16/99-9/20/99 500 500 First 1000
9/21/99-9/22/99 150 150 Second 1300
9/27/99 50 50 Third 1400
Total 700 700
On-line testing
Using models developed from
9/22/99 2049 124 First data set
9/23/99-9/24/99 4431 240 Second data set
9/28/99-9/30/99 5952 395 Third data set
Total 12,432 759

Table 2
Neural network models

Model Learning rule Transfer function
1 Delta Tanh

2 Delta Sigmoid

3 Norm-cum-delta Tanh

4 Norm-cum-delta Sigmoid

model and how much training is optimal. The valida-
tion set is predicted every 200 iterations of the training
cycle, and the network weights are saved if the classi-
fication results have been improved. Training is always
stopped after 15,000 iterations.

The software used for neural network model devel-
opment was NeuralWorks Professional II/Plus (Neu-
ralWare, Pittsburgh, PA). Two back-propagation rules
(delta and norm-cum-delta) and two transfer functions
(sigmoid and tanh) were used for a total of four models
(Table 2) for each training/validation split of the data.
The models then used for on-line testing were selected
based on performance on the validation set for both
wholesome and unwholesome samples.

On-line testing of the inspection system was performed
by neural network models previously selected from off-
line training. A total of 13,191 poultry carcasses (12,432
wholesome and 759 unwholesome) were tested (Table 1).
In each case, the 540 and 700 nm results were combined
using an AND operation to give a single prediction. That
is, a carcass is predicted wholesome only if the data from
both cameras result in wholesome prediction. This pre-
diction result and the identification result from the vet-
erinarian were saved in ASCII files for evaluating the
performance of the on-line inspection system.

3. Results and discussion

3.1. Spectral characterization of poultry carcasses

Fig. 3 shows typical images for sampled poultry
carcasses at two wavelengths. Typical images of whole-

some carcasses and unwholesome carcasses are shown.
Septicemia is a systemic disease caused by pathogenic
microorganisms in the blood. Cadaver is caused by
improper slaughter cuts or inadequate bleeding time.
Air-sac (airsacculitis) is commonly used to describe a
respiratory syndrome.

The reflectance intensity of wholesome carcasses was
not sensitive to the wavelength filters. As shown in
Figs. 3(g) and (h), little difference existed in reflectance
intensity between wavelengths at 500 and 700 nm.
However, the reflectance intensities for unwholesome
carcass at 540 and 700 nm were significantly different
from that of unwholesome carcasses. For unwholesome
chicken carcasses, the reflectance with the filter of the
540 nm wavelength was darker than the intensity with a
700 nm filter (Figs. 3(a)—(f)). This shows that the un-
wholesome spectral images at the 700 nm wavelength
were not the same as that of a carcass at the 540 nm
wavelength. Thus, the combination of these two wave-
lengths enabled the differentiation of wholesome car-
casses from unwholesome carcasses.

3.2. Model development accuracy of neural network
models

For each of the three data sets, four neural network
models were tested to select the optimum for use in
subsequent on-line classification of poultry carcasses,
with results shown in Tables 3-5. With some exceptions,
all models and data sets showed similar results: about
95% classification accuracy for wholesome, 88% for
unwholesome and 93% for combined. The 700 nm result
was slightly less accurate than that of the 540 nm for
unwholesome. We suspect that this is because the more
useful information is contained in the myoglobin ab-
sorbing area near 540 nm. Other research at ISL (Liu,
Chen, & Ozaki, 2000) indicates that the 540 nm area is
more spectroscopically sensitive to changes in the state
of chicken carcasses.

There was some improvement from adding the 300
samples to the first data set to form the second data set,



190 K. Chao et al. | Journal of Food Engineering 51 (2002) 185-192

Table 3

Fraction predicted correctly during off-line training using the first data set

Wholesome carcasses

Unwholesome carcasses

All carcasses

Carcass spectral images at 540 nm

Model 1* 0.94 0.90
0.94 0.84
Model 2 0.96 0.90
0.96 0.81
Model 3 0.92 0.85
0.91 0.78
Model 4 0.95 0.87
0.94 0.80

Carcass spectral images at 700 nm

Model 1* 0.95 0.81
0.95 0.80
Model 2 0.96 0.81
0.94 0.78
Model 3 0.94 0.80
0.93 0.73
Model 4 0.94 0.84
0.92 0.75

0.92 Training
0.89 Validation
0.93 Training
0.89 Validation
0.89 Training
0.85 Validation
0.91 Training
0.87 Validation
0.88 Training
0.88 Validation
0.89 Training
0.86 Validation
0.87 Training
0.83 Validation
0.89 Training
0.84 Validation

#Used in on-line testing.

Table 4

Fraction predicted correctly during off-line training using the second data set

Wholesome carcasses

Unwholesome carcasses

All carcasses

Carcass spectral images at 540 nm

Model 1 0.95 0.91
0.96 0.85
Model 2* 0.94 0.94
0.94 0.88
Model 3 0.91 0.94
0.92 0.88
Model 4 0.96 0.89
0.97 0.84

Carcass spectral images at 700 nm

Model 1 0.96 0.86
0.94 0.88
Model 2¢ 0.97 0.83
0.95 0.86
Model 3 0.98 0.78
0.99 0.81
Model 4 0.94 0.84
0.94 0.86

0.93 Training
0.90 Validation
0.94 Training
0.91 Validation
0.92 Training
0.90 Validation
0.93 Training
0.90 Validation
0.91 Training
0.91 Validation
0.90 Training
0.91 Validation
0.88 Training
0.90 Validation
0.89 Training
0.90 Validation

#Used in on-line testing.

but little when adding the last 100 samples to make the
third data set. This indicates that during the time of the
experiment, 1300 samples was sufficient to define the
variability. It is probable that more data would need to
be added in a longer-term test, when new populations of
chickens (different breeds, feeding regimens, seasons,
etc.) are encountered.

As in previous work (Chao et al., 2000), there were
no striking differences between the models. We suspect
it is because both transfer functions are similarly shaped
in the range used. Models 1 and 2 were consistently

better than 3 and 4, indicating some advantage to the
simpler delta learning rule. We know of no way to test
for statistical significance of these differences because
such tests have not been developed for neural network
results. Our choice of the model to use in subsequent
online testing is based on the validation performance on
‘all carcasses’, with ties going to model 1. Thus, we used
model 1 throughout for the 700 nm data; and we used
model 2 for the 540 nm data, except for the first data
set, where the slightly better performance on the un-
wholesome carcasses prompted a decision for model 1.
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Table 5

Fraction predicted correctly during off-line training using the third data set

191

Wholesome carcasses

Unwholesome carcasses

All carcasses

Carcass spectral images at 540 nm

Model 1 0.95 0.94 0.94 Training
0.93 0.89 0.91 Validation
Model 2* 0.94 0.94 0.94 Training
0.94 0.89 0.92 Validation
Model 3 0.94 0.93 0.93 Training
0.95 0.87 0.91 Validation
Model 4 0.97 0.90 0.93 Training
0.97 0.84 0.91 Validation
Carcass spectral images at 700 nm
Model 1 0.96 0.87 0.91 Training
0.95 0.87 0.91 Validation
Model 2* 0.93 0.86 0.90 Training
0.92 0.82 0.87 Validation
Model 3 0.96 0.80 0.88 Training
0.95 0.83 0.89 Validation
Model 4 0.94 0.89 0.91 Training
0.90 0.88 0.89 Validation
#Used in on-line testing.
Table 6
Classification accuracy for on-line testing
Test on day(s) Predicted
Wholesome Unwholesome Accuracy(%)
9/22/99 Actual Wholesome 1864 185 90.9
Unwholesome 22 102 82.2
9/23/99-9/24/99 Actual Wholesome 4126 305 93.1
Unwholesome 34 206 85.8
9/28/99-9/30/99 Actual Wholesome 5599 353 94.0
Unwholesome 50 345 87.3

3.3. On-line classification of unwholesome from whole-
some carcasses

Table 6 shows the on-line classification results using
the six best models discussed above. As stated above, the
540 and 700 nm results were combined using an AND
operation to give a single prediction. This gave three sets
of results, the first when the models developed from the
first data set were tested on-line on 9/22/99, the second
when the models developed from the second data set
were tested on-line on 9/23/99, and the third when the
models developed from the third data set were tested on-
line on 9/28/99.

In each case, the results for the wholesome was better
than that for the unwholesome, as was seen in the model
development stage. The results improved from sets 1 to
2 as in model development. They also improved from set
2 to 3, indicating that the expansion of the variability in
the model development sets was more than could be
detected at the model development stage. We would
expect the on-line testing results to be less accurate as
those for training, partly because that is usually the case
in a training/testing situation, and partly because of the

use of the AND function. But in the third trial, the re-
sults for the wholesome improved to the 94% classifi-
cation accuracy of the training stage and the
unwholesome classification reached the 87% classifica-
tion accuracy of the training stage. This shows that the
broadening of the variability in the third training set was
useful in on-line predicting, even though it was not de-
tected in the training stage.

The success rates achieved here are not quite sufficient
for a completely automated inspection system. The
utility of this system would be in the high-speed
screening of carcasses into two categories: a high per-
centage that can be processed without further inspec-
tion, and a smaller group that would need evaluation by
human inspectors or machines yet to be perfected.

4. Conclusions

In previously reported results for far fewer samples
run in the ISL laboratory pilot-scale facility, we obtained
similar results, that is, on the order of 95% accuracy for
wholesome, and 88% for unwholesome. This shows that
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the instrument is fulfilling its promise, not only with re-
spect to the precision of the desired measurement, but
also in terms of durability in a commercial plant envi-
ronment. Future research will involve the use of a com-
mon aperture camera with simultaneous capture of the
same image at 2-4 wavelengths. This will allow not only
more spectral information to be obtained, but will permit
more complex use of the multi-spectral information, be-
cause of the complete image registration. Future research
will also include imaging the back of each bird where
there exists a configuration that permits this, such as the
European viscera-pack-separation system.
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